Kot Schrödingera – w mechanice kwantowej słynny eksperyment myślowy (doświadczenie myślowe) z hipotetycznym kotem.
Schrödinger wymyślił urządzenie oddziałujące na kota, zamkniętego w pojemniku z trucizną (np. z trującym gazem). Do szczelnego pojemnika wkładamy: żywego kota, źródło promieniotwórcze emitujące średnio jedną cząstkę na godzinę oraz detektor promieniowania (np. licznik Geigera-Müllera), który w chwili wykrycia cząstki uwalnia trujący gaz. Po zamknięciu pojemnika i odczekaniu jednej godziny mamy 50% prawdopodobieństwo, że kot jest martwy, i takie samo prawdopodobieństwo, że jest nadal żywy. Tak sugerowałby tzw. zdrowy rozsądek. Jeśli nastąpi radioaktywny rozpad i licznik go zarejestruje, zostanie uruchomiony mechanizm, który uwolni truciznę, wtedy kot zginie. Jeśli rozpad nie będzie miał miejsca, zwierzę nadal będzie cieszyło się życiem.
Z opisu kwantowo-mechanicznego wynika jednak coś innego – przed otwarciem pojemnika kot jest jednocześnie i martwy, i żywy. Jako obiekt kwantowy, znajduje się on równocześnie w każdym z możliwych stanów (tzw. superpozycji). Dopiero otwarcie pojemnika i sprawdzenie jego zawartości redukuje układ do jednego stanu – następuje załamanie funkcji falowej kota, i dopiero w momencie poczynienia obserwacji kot przyjmuje jeden, konkretny stan. W tym przypadku mamy tylko dwa możliwe stany - kot jest martwy albo żywy.
Zgodnie z regułami tzw. interpretacji kopenhaskiej, do momentu przeprowadzenia pomiaru, tzn. stwierdzenia, co dzieje się z kotem, jego stan jest fundamentalnie nieokreślony – kot jest jednocześnie żywy i martwy. Fizycy mówią o superponowanym stanie żywego i martwego kota. Dopiero pomiar rozstrzygnie jego losy. Występowanie superpozycji stanów jest zjawiskiem powszechnym w świecie mikroskopowych obiektów.
Eksperyment kłóci się ze zdrowym rozsądkiem, co wynika z faktu, że jest niemożliwy do przeprowadzenia w świecie makroskopowym. Przedmioty dostępne nam do obserwacji w naszej skali składają się z obiektów podlegających prawom mechaniki kwantowej. Jednak, ze względu na bardzo dużą ilość tych obiektów, ich poszczególne stany uśredniają się, nie pozwalając obserwować efektów kwantowych.
Schrödinger wymyślił urządzenie oddziałujące na kota, zamkniętego w pojemniku z trucizną (np. z trującym gazem). Do szczelnego pojemnika wkładamy: żywego kota, źródło promieniotwórcze emitujące średnio jedną cząstkę na godzinę oraz detektor promieniowania (np. licznik Geigera-Müllera), który w chwili wykrycia cząstki uwalnia trujący gaz. Po zamknięciu pojemnika i odczekaniu jednej godziny mamy 50% prawdopodobieństwo, że kot jest martwy, i takie samo prawdopodobieństwo, że jest nadal żywy. Tak sugerowałby tzw. zdrowy rozsądek. Jeśli nastąpi radioaktywny rozpad i licznik go zarejestruje, zostanie uruchomiony mechanizm, który uwolni truciznę, wtedy kot zginie. Jeśli rozpad nie będzie miał miejsca, zwierzę nadal będzie cieszyło się życiem.
Z opisu kwantowo-mechanicznego wynika jednak coś innego – przed otwarciem pojemnika kot jest jednocześnie i martwy, i żywy. Jako obiekt kwantowy, znajduje się on równocześnie w każdym z możliwych stanów (tzw. superpozycji). Dopiero otwarcie pojemnika i sprawdzenie jego zawartości redukuje układ do jednego stanu – następuje załamanie funkcji falowej kota, i dopiero w momencie poczynienia obserwacji kot przyjmuje jeden, konkretny stan. W tym przypadku mamy tylko dwa możliwe stany - kot jest martwy albo żywy.
Zgodnie z regułami tzw. interpretacji kopenhaskiej, do momentu przeprowadzenia pomiaru, tzn. stwierdzenia, co dzieje się z kotem, jego stan jest fundamentalnie nieokreślony – kot jest jednocześnie żywy i martwy. Fizycy mówią o superponowanym stanie żywego i martwego kota. Dopiero pomiar rozstrzygnie jego losy. Występowanie superpozycji stanów jest zjawiskiem powszechnym w świecie mikroskopowych obiektów.
Eksperyment kłóci się ze zdrowym rozsądkiem, co wynika z faktu, że jest niemożliwy do przeprowadzenia w świecie makroskopowym. Przedmioty dostępne nam do obserwacji w naszej skali składają się z obiektów podlegających prawom mechaniki kwantowej. Jednak, ze względu na bardzo dużą ilość tych obiektów, ich poszczególne stany uśredniają się, nie pozwalając obserwować efektów kwantowych.